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Abstract 

High upfront costs are a critical barrier for investments in clean infrastructure technologies in 
developing countries. This paper uses a case study of Thailand’s electricity sector to create realistic 
estimates for the relative contributions of local and global technological learning to reducing these 
cost in the future and discusses implications of such learnings for international climate policy. For six 
renewable electricity technologies, we derive estimates for the share of locally and globally sourced 
goods and services, and analyze the effects of local and global learning during the implementation of 
Thailand’s renewable energy targets for 2021. Our results suggest that, in aggregate, the largest 
potential for cost reduction lies in local learning. This finding lends quantitative support to the 
argument that the conditions enabling local learning, such as a skilled workforce, a stable regulatory 
framework, and the establishment of sustainable business models, have a more significant impact on 
cost of renewable energy in developing countries than global technology learning curves. The recent 
shift of international support under the United Nations Framework Convention on Climate Change 
towards country-specific technology support is therefore promising. However, our results also show 
that the relative importance of local and global learning differs significantly between technologies, 
and is determined by technology and country characteristics. This suggests that international support 
need to consider both the global perspective and local context and framework conditions in order to 
reap the full benefits of technological learning across the wide range of clean technologies. 
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Highlights: 

x Development of a techno-economic model of Thailand’s Alternative Energy Development 
Plan 2012-2021 

x Analysis of the impacts of local and global learning effects on mitigation cost 
x Demonstration that the importance of global and local learning varies between clean 

technologies 
x Finding that local learning is significant for wind, PV, biogas and micro hydro, whereas global 

learning is important for PV and solar thermal 
x Discussion of the future role of the international support for clean technologies 
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1. Introduction 

The global climate policy regime needs to significantly accelerate the diffusion of clean technologies 
to avoid dangerous impacts from climate change (UNFCCC, 2012). In addition to actions taken by the 
developed world, developing countries are expected to assume greater responsibility by 
implementing domestic policies that contribute to both domestic economic development and 
climate change mitigation (Kanie et al., 2010). Indeed many developing countries are already 
implementing domestic climate legislation, despite the gridlock in international negotiations 
(Nachmany et al., 2014; REN21, 2013; Townshend et al., 2013). However, high upfront costs remain a 
critical barrier for large-scale investments in clean technologies, especially in developing countries 
(IPCC, 2012; Schmidt, 2014). How to accelerate the development and transfer of clean technologies is, 
therefore, emerging as a central issue in the international climate policy negotiations (Ockwell and 
Mallett, 2012; Pueyo et al., 2012). 

Experience in the industrialized world has shown that cost reductions and performance 
improvements of new technologies are often closely linked to policies aimed at increased production 
and deployment (Jänicke, 2012), driven by mechanisms collectively referred to as technological 

learning (Junginger et al., 2010). If successful, the increasing number of mitigation actions taken now 
by developing countries holds the promise to stimulate innovations and future cost reductions there 
as well. But technological learning encapsulates a diverse array of purposeful processes that some 
countries, sectors and organizations manage better than others (Bell and Figueiredo, 2012; van Hoof, 
2014). Besides creating financial incentives for investment, one of the key challenges for 
international climate policy is therefore to actively promote technological capabilities in developing 
countries and to enable countries to reap the full learning benefits from mitigation investments they 
make and attract (Benioff et al., 2010; Bhasin, 2013; de Coninck et al., 2008; Ockwell and Mallett, 
2012). 

Technological learning in developing countries, especially outside the largest emerging economies, 
follows distinct dynamics (Pueyo et al., 2011). The industries producing clean technologies are 
increasingly globalized (Gallagher, 2014; Lewis, 2012; Nahm and Steinfeld, 2014). Therefore, in a 
typical investment project, local firms in developing countries provide only part of the products and 
services. Learning in this share of the industry value chain is local in nature and driven by local 
market developments and policies – we will refer to it as local technological learning (Morrison et al., 
2008; Mytelka, 2000). However, because a substantial share of components is typically sourced from 
abroad, the economics of local investments are also impacted by technological learning processes in 
other countries. For example, technological progress by Chinese solar cell producers improves the 
economics of solar investments around the world. This form of learning is driven more by global 
markets than by policies in individual countries (Peters et al., 2012). Future investment conditions for 
clean technologies in developing countries thus depend on a combination of global and local learning 
processes, which, in turn, depend on domestic and international regulatory, institutional and 
industrial contexts. Better understanding of the relative importance of the two can improve both 
domestic and international policy decisions. 

Using a quantitative case study, this paper estimates the effect of local and global technological 
learning on the cost reductions of renewable electricity generation in Thailand. We employ a techno-
economic model of the country’s electricity sector to project the cost of implementing the country’s 
renewable energy targets for 2021 (Kamolpanus, 2013). We derive estimates for the share of locally 
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and globally sourced goods and services for six renewable electricity technologies and analyze, in 
different scenarios, the impact of local and global learning effects on the investment cost. Based on 
the results, we explore implications for the design of international low carbon technology support 
mechanisms. 

The paper makes three main contributions. First, our case study informs the academic debate as well 
as international negotiations on the post-Kyoto climate policy regime of the United Nations 
Framework Convention on Climate Change (UNFCCC). In its support for technology development and 
transfer, the international climate policy regime has recently shifted its attention toward national 
policies and local technological learning. The analysis presented in this paper enhances the 
understanding of the merits of this shift, and informs the design and functional specification of the 
new international technology support mechanisms. Our quantitative approach and the focus on 
mitigation cost complements existing conceptual and qualitative work on the topic (Benioff et al., 
2010; Bhasin, 2013; de Coninck et al., 2008; Ockwell and Mallett, 2012). Furthermore, it contributes 
to the growing body of literature on the economics of clean energy technology investments in 
developing countries (e.g., IRENA, 2012a; Schmidt et al., 2012). Finally, our paper is among the first 
to investigate the impact of local and global learning separately for a specific developing country case. 

The next section will introduce the key theoretical constructs used in the analysis (Section 2). Section 
3 introduces the case, before section 4 presents the model, the data sources, and the methodology. 
The results of the case study are presented in Section 5, and their policy implications discussed in 
Section 6. 

2. Local and Global Technological Learning 

2.1. Technological Learning in Developing Countries 

Technological learning is understood here broadly as the accumulation of technological knowledge 
and experience, often also referred to as technological capabilities, in individuals and organizations 
(Bell and Figueiredo, 2012). Research on innovation processes has shown that the technological 
capabilities held by firms comprises not only information codified in capital goods or documents 
(patents, manuals, etc.), but also includes the tacit knowledge embodied in individual skills and firm 
routines (Dosi, 1988; Senker, 1995). These elements of knowledge are costly to transfer and 
therefore highly organization-specific (von Hippel, 1994). This means that removing trade barriers 
and providing developing countries with intellectual property rights (IPR) and resources for 
technology imports is not sufficient to enable countries to catch up to the technological frontier (Bell 
and Pavitt, 1996; Ockwell et al., 2010). Rather, catching up requires building local technological 
capabilities through the cumulative, costly and time-consuming process of technological learning 
(Bell, 2010). 

Technological capabilities and learning are increasingly being recognized as significant drivers of low 
carbon development (Byrne et al., 2011; Lema and Lema, 2013; Phillips et al., 2013). The 
international climate negotiations, too, are taking notice (Ockwell and Mallett, 2012). Improved 
technological capabilities hold the promise of removing barriers to the diffusion of clean technologies, 
thereby facilitating further emission reductions in the future (Sandén and Azar, 2005). Besides its 
effect on mitigation cost, the local build-up of technological capabilities is crucial for local industrial 
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capacity, poverty reduction and economic growth. For many developing countries, investing in 
climate change mitigation is, for now, only desirable if the government can create opportunities for 
the local private sector to participate in the value chain of mitigation investments. However, in order 
to participate in the development and manufacturing of clean technologies, local firms in developing 
countries need to create the capacity to continuously absorb, adapt and improve new technologies 
(Bell and Pavitt, 1996). 

Climate models increasingly incorporate learning as an endogenous process driven by mitigation 
investments (Kahouli-Brahmi, 2008; van der Zwaan et al., 2002), but technological learning is not an 
automatic by-product of investments (Bell and Figueiredo, 2012). Rather, in the analysis of the 
development of mitigation policies and estimation of future mitigation cost, it is better understood 
as an opportunity that can be only adequately seized when both governments and firms create the 
necessary conditions. Organizations need to pursue conscious efforts to create the ability, in the 
form of a skilled workforce and organizational processes, to absorb the new knowledge and 
experience that they generate (Cohen and Levinthal, 1989). Furthermore, organizations innovate and 
learn through their interaction with users, suppliers, competitors, universities or regulators in 
systems of innovation (Fagerberg et al., 2007; Lundvall et al., 2009). The existence of formal and 
informal networks, as well as public funding for science and technology, are therefore critical drivers 
of technological learning. And, last but not least, learned capabilities degenerate rapidly if 
organizations have a rapid workforce turnover, face an instable regulatory framework, or pursue 
unsustainable business models. 

2.2. Local and Global Learning Effects in Value Chains 

Most clean technologies are technological systems consisting of hundreds, or even thousands, of 
materials, components, and intermediate goods. Furthermore, mitigation investments involve 
numerous legal, financial, and regulatory services. The collective of technology suppliers and service 
providers that deliver the materials, components, products and services to deploy technologies we 
call the technologies’ industry value chain. 

Modern industry value chains are disintegrated and geographically distributed production and 
service networks. As markets for clean technologies have grown, their supplying industries have also 
globalized in recent years (e.g., Gallagher, 2014; Lewis, 2012; Nahm and Steinfeld, 2014). Globally 
traded components and products are often those that can be transported at relatively low cost and 
have standardized interfaces. (On the extreme end of this spectrum are commodities.) Globally 
traded services often require highly specialized technological expertise that only very few firms 
possess. In the wind turbine industry, for example, gearboxes, hubs, generators and bearings are 
components for which the know-how necessary for design and manufacturing is concentrated in only 
a few key firms globally. Further, the consulting services needed to make a complex product 
bankable, or a difficult geography accessible, are often provided by experienced, globally operating 
firms. 

For technological learning in globally traded goods and services, global market conditions matter 
more than where their products are finally deployed. If uncertainty about the product’s performance 
is very large, as in the case of carbon capture and storage technology, any demonstration will add to 
the global knowledge pool (de Coninck et al., 2009). In the case of smaller components, materials, or 
intermediate goods, producers seldom even interact with end-users, if they know them at all. In the 
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case of services, the global applicability of their experience is the key reason why globally operating 
producers are selected in the first place. The accumulation of capabilities in firms and industries is 
therefore more dependent on global, aggregate market trends than on country-specific context 
factors. We define learning in these goods and services as global technological learning, because, in a 
simplified learning model or experience curve, it would best be predicted by the size of the global 
market.  

But value chains are not entirely globalized. To stimulate local private sector participation, many 
climate-related laws in developing countries contain some form of provision to create a certain level 
of domestic content. This gives local firms economic advantages over global suppliers. But even 
without legislative requirements, often local firms provide many steps. This may include large and 
heavy components that are costly to transport, or factors which are cheaper to make at home; but it 
is important to note that the drivers underlying these patterns are not affected only by input or 
transportation cost. The drivers for localization may include the expertise required to deal with 
idiosyncratic geography, context-specific or fast-changing regulations, or local infrastructure and 
climate conditions. In a wind power project, for example, towers, blades, and foundations are 
typically sourced from suppliers not far from the project site, and domestic firms often provide 
project development, installation, operation, and maintenance services. In developing countries, it is 
reasonable to assume that local firms are mostly active in their home markets. We will therefore 
assume that their learning is predominantly local, and refer to technological learning in this part of 
the value chain as local technological learning. 

The geographical dispersion of value chains leads to cost and cost trends that differ significantly 
between components (e.g., Lindman and Söderholm, 2011). Cost trends and learning curves are 
global whenever global markets exists, while for the locally sourced components trends differ 
substantially between regions (e.g., Seel et al., 2014). For the latter, local economic, political, and 
regulatory conditions determine whether or not investments lead to the accumulation of 
technological capabilities, which in turn are essential to reduce local investment cost. To stimulate 
progress in this part of the value chain, domestic and international policymakers should focus on 
strengthening the domestic innovation system. For the global part of the value chain, however, 
which also affects domestic investment economics, national innovation systems are not very 
important. Here, policymakers need to work toward international knowledge sharing and 
standardization activities to strengthen the sectoral innovation system in order to advance low-
carbon technologies (de Coninck et al., 2009). They should also strive for the global markets to 
remain open and try to minimize protectionism to reap the benefits of global technological learning 
(Lewis, 2014). 

3. The Case of Thailand’s Electricity Sector 

3.1. Case Selection 

This paper presents a quantitative case study of Thailand’s Alternative Energy Development Plan 
(DEDE, 2012) for the electricity sector in order to explore the relative importance of local and global 
learning in developing countries’ mitigation efforts. We chose a case study of the electricity sector 
because it lies at the heart of the climate change challenge as the single largest source of CO2 
emissions among the primary sectors of the world economy (Bazilian et al., 2008). Indeed, the 
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majority of national mitigation policies in developing countries target energy production and 
consumption in the industrial, energy supply, buildings, and transport sectors (van Tilburg et al., 
2013). At the same time, the diversity of technologies in the electricity sector and their globally 
operating technology providers allows us to model both local and global learning processes. 

We chose Thailand as case study for three reasons. First, the country has clear, broad and ambitious 
targets for renewable energy diffusion which allow us to study the impact of different learning 
conditions on the cost of an existing policy. Second, the country’s government publishes detailed 
data on energy production and consumption that allow us to model the electricity sector on a single-
plant level. Third, the country faces economic and political challenges that make the framework 
conditions for its energy policy decisions representative of a large number of other middle-income 
countries. A country of 66.9 million with a GDP per capita at USD 5,210, Thailand has managed to 
provide its population with almost universal access to electricity (The World Bank, 2014). Like many 
other middle-income countries, it now faces the challenge of rapidly growing energy consumption, 
accompanied by growing carbon emissions, import dependency, national security concerns and local 
resistance to fossil and nuclear power plants. How to assist emerging economies in managing these 
challenges while simultaneously reducing carbon emissions will be one of the most important 
questions for international climate policy in the coming decades. 

3.2. Trends and Challenges 

Primary energy consumption in Thailand has almost tripled from 1990 to 2011, making it the second-
largest energy consumer in the Association of Southeast Asian Nations (ASEAN), while subsequently 
its greenhouse gas (GHG) emissions grew by 177.5% (see Figure 1). The power sector is the largest 
carbon source, with a share in national emissions that grew from 33% in 1990 to 42% in 2011. By 
2035, energy consumption and GHG emissions are expected to roughly double yet again (IEA, 2013a). 

Thailand is already a net importer of oil, gas and coal, and is projected to become the most energy 
import-dependent country among the ASEAN by 2035, with imports estimated to increase to about 
90% of consumed oil and gas (IEA, 2013a). Nakawiro et al (2008) estimate that gas and coal import 
costs will grow from 0.92% of the country’s GDP in 2011 to 2.19-2.69% in 2025, depending on the 
development of fuel prices in the region. The main domestic sources are not without challenges, too, 
in light of strong local opposition to nuclear power and new coal plants (Greacen and Bijoor, 2007; 
Pongsoi and Wongwises, 2013).1 

1The first nuclear plant was originally scheduled to come online in 2020, but was postponed to 2026 after the 
nuclear incidence in Fukushima, Japan, in 2011. 
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Figure 1: Thailand’s carbon emissions by sector (a) and future projections for emissions from the country’s power sector 
(b). 1CO2 emissions from power sector do not contain imports. Data from EPPO (2013, 2012a). 

As of 2011, the electricity sector is dominated by natural gas (67%), with lignite and hard coal 
providing together about 20% as well (Figure 2). Besides large hydropower (5%), renewable energy 
constitutes only a very small part of the electricity mix, mostly in the form of biomass (1.4%) (EPPO, 
2012b). The remaining demand is covered by direct electricity imports (6.6%). Electricity generation 
reached 162 TWh in 2011 and is projected to increase by more than 4% annually (EPPO, 2012b, 
2012c). Besides domestic capacity investments, the government plans to meet demand by increasing 
the share of direct electricity imports from neighboring Malaysia and Laos to 13% in 2030 (Figure 2). 

 

Figure 2: Development of the fuel mix in Thailand’s power sector from 1987 to 2030. 1The renewables wedge contains 
hydropower after 2011; the share of renewables after 2012 reflects relatively conservative projections of the Power 
Development Plan. Data from EPPO (2013, 2012a). 

3.3. Targets and Support for Renewable Energy 

In recent years, electricity sector planning initiatives have begun to consider renewable energy as a 
potential remedy for some of the problems the country faces. Thailand has no official renewable 
energy law at this point but several comprehensive long-term energy plans (Tongsopit and Greacen, 
2013). The two most important are the Power Development Plan by the Energy Policy and Planning 
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Office (EPPO, 2012c) and the Alternative Energy Development Plan (AEDP) by the Department of 
Alternative Energy Development and Efficiency (DEDE, 2012; Kamolpanus, 2013), both under the 
Ministry of Energy. The AEDP, updated in 2013, is aiming to increase the renewable energy in the 
power sector to 14 GW by 2021, or 24% of the total capacity (compare with Figure 2). As shown in 
Figure 3, the largest part of this capacity is projected to come from biomass (4.8 GW), followed by 
biogas (3.6 GW), solar power (3 GW), wind power (1.8 GW) and micro hydro (324 MW).2 The largest 
relative increase is targeted for biogas (17-fold) and wind energy (15-fold). It is notable that large 
hydro is not part of the AEDP. For simplification, we therefore use the term ‘renewable electricity’ in 
this paper to refer to non-large-hydro renewable electricity technologies. 

 

Figure 3: Targets for renewable electricity under Thailand‘s Alternative Energy Development Plan (DEDE, 2012). Data for 
2012 are from DEDE (2013); updated targets for 2021 from Kamolpanus (2013). 

In addition to public research, tax incentives, venture capital and investment grants, the primary 
government policy to induce renewable energy investments is currently a feed-in tariff premium 
scheme, referred to as ‘FIT adder’ (DEDE, 2012; Tongsopit and Greacen, 2013). The FIT adder 
program provides a purchase guarantee under which fixed premiums, which differ by technology, 
capacity and project location, are paid on top of a base tariff that is determined by the utility’s 
avoided cost. Originally implemented in 2007, the official objectives of the FIT adder policy included 
enhanced levels of renewable energy generation; private sector involvement; economic growth and 
rural development; diversification of the fuel mix; local pollution reduction and utilizing agricultural 
wastes; as well as local equipment manufacturing and thus reduced international equipment imports 
(Tongsopit and Greacen, 2013). In 2010, Thailand’s government announced plans to transform the 
FIT adder into a fixed FIT, but has done it so far only for rooftop solar PV (Kamolpanus, 2013). There 
is no local content requirement in Thailand’s renewable electricity support policies, but import duties 
create incentives to source locally (Beerepoot et al., 2013).3 

2 The targets include another 400 MW of municipal waste incineration plants. 
3 These import duties were not considered in our analysis. 
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3.4. Local and Global Learning in Renewable Energy in Thailand 

As developed in Section 2, modern clean technology value chains feature significant local and global 
value creation. To illustrate how the local and global aspects of the value chain play out in Thailand, 
the value chain of a typical project in the electricity sector in Thailand is shown in Figure 4. Displayed 
is a value chain of a solar PV project, including the primary value chain, from material and 
component suppliers, up to the grid operator, and secondary activities such as universities, 
consultancies or legal services. For one specific project, a 9.5 MW solar PV project in Mae Chan in 
Chiang Rai province developed in 2013, we identified the most likely countries of origin for each 
value chain step. In the depicted case the project operator, the grid operator, the construction 
company, one of the two project developers, (probably) legal and financial services, and the 
regulator are local, while no core hardware components were manufactured in Thailand. The 
modules are manufactured by a Norwegian company in Singapore, while the inverters are made by a 
Swiss-Swedish company, most likely in Estonia. The leading production equipment suppliers, material 
suppliers and research institutes are located in Europe, the United States and Australia, thus it is 
almost certain that all these countries/continents are also represented in the value chain. The 
economics of the final project are determined by progress by all these actors in a concurrence of 
local and global learning effects, which calls for policy support that strengthens learning conditions 
locally and globally to facilitate overall technological progress. 

 

Figure 4: Value chain for an exemplary solar PV project in Thailand. Country codes as defined by UN Statistics Division; EU 
stands for European Union. Company identification from news sources. 
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4. Materials and Methods 

4.1. General model framework 

We developed a model of Thailand’s electricity sector and used different scenarios to estimate the 
effects of technological learning on the cost of achieving the Alternative Energy Development Plan 
(AEDP) targets. We chose a bottom-up, techno-economic model (Berglund and Söderholm, 2006) 
because it allows us to study the effects of cost dynamics on the technology-level on the aggregate 
cost of renewable energy policies (Kahouli-Brahmi, 2008). To model the effects of learning on the 
cost of technologies, we chose the learning curve approach because it enables us to treat local and 
global effects separately (Hayward and Graham, 2013). We focused on six renewable energy 
technologies under the AEDP: biomass, biogas, micro hydro, on-shore wind, solar PV, and 
concentrating solar power (CSP). 

 

Figure 5: Relationships between key input and output metrics in the techno-economic model; the upper half of the 
graphic shows variables calculated on the technology-level; the lower half shows variables calculated for the entire 
electricity sector/policy. 

The overall structure of the model with its key variables and relationships is depicted in Figure 5. 
Calculating the cost of renewable electricity is a well-established process in renewable energy policy 
analysis (Burtraw et al., 2012). The cost of the avoided electricity, however, even though at least 
equally important, are often neglected (Schmidt et al., 2012). To obtain the cost of avoided electricity 
and the avoided greenhouse gas emissions, we compared different scenarios for diffusion of 
renewable energy with a hypothetical scenario without any renewables diffusion. Based on this 
comparison, the model provides two main outcome metrics, shown in dark grey in Figure 5, to assess 
the policy support needed to achieve Thailand’s renewable electricity targets: the incremental policy 

cost and the mitigation cost, both stated as net present value.
4
 The former is a proxy for marginal 

4 The incremental costs and the mitigation costs are discounted to the year 2012 with the yield of 40-year Thai 
government bonds, which reflects the refinancing cost of the Thai government over the period of the assumed 
feed-in Tariff payments. 
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social cost (Palmer and Burtraw, 2005), while the latter allows comparisons between different 
mitigation measures and carbon prices. 

How the scenarios deviate from the non-renewables scenario is calculated on the sectoral level. The 
incremental costs represent the difference between the total cost of renewable electricity and the 
total cost of avoided electricity (Schmidt et al., 2012). The mitigation costs are calculated based on 
the total carbon emission reductions from the AEDP and the incremental cost: 

ݐݏ݋ܿ ݕ݈ܿ݅݋݌ ݈ܽݐ݊݁݉݁ݎܿ݊ܫ (݅) = ݕݐ݅ܿ݅ݎݐ݈ܿ݁݁ ݈ܾ݁ܽݓ݁݊݁ݎ ݂݋ ݐݏ݋ܥ  െ  [݄ܹܯܦܷܵ ݎ݋ ܦܷܵ ݊݅] ݕݐ݅ܿ݅ݎݐ݈ܿ݁݁ ݀݁݀݅݋ݒܽ ݂݋ ݐݏ݋ܥ

ݐݏ݋ܿ ݊݋݅ݐܽ݃݅ݐ݅ܯ (݅݅) = ݐݏ݋ܿ ݈ܽݐ݊݁݉݁ݎܿ݊ܫ 
]   ݏ݊݋݅ݏݏ݅݉݁ ݏܽ݃ ݁ݏݑ݋݄݊݁݁ݎ݃ ݀݁݀݅݋ݒܣ

ܦܷܵ
ଶܱܥݐ

]  

For each of the renewable and fossil technologies in the sector we calculated the cost of electricity 
generation for each year of the considered period. The cost of renewable electricity and the cost of 
avoided electricity were then aggregated from the technology-level calculations. The cost of 
renewable electricity was aggregated over the renewable technologies under the AEDP in 2013-2021 
(details in Section 4.2). The cost of avoided electricity was aggregated over the 9 main fossil 
technologies from 2013, when the electricity is displaced, to 2040, when the last renewable plant 
goes offline. How we calculated the avoided cost and avoided emissions is explained in detail in 
Appendix A. 

4.2. Cost of Renewable Electricity Generation 

4.2.1. Generated Electricity 

The electricity generated by each source of renewable electricity is a function of the diffusion path 
and the plant utilization. Since the AEDP does not contain interim targets, we modeled the diffusion 
of the six considered technologies as a linear increase in installed capacity. The split between PV and 
CSP in the (undifferentiated) total solar target is assumed as a relation of 9 (PV) to 1 (CSP). All 
renewable electricity is assumed to be fed into the grid (no curtailment), so the plant utilization is a 
mere function of the resource potential. In the case of micro hydro, biogas and biomass, for which 
significant domestic experience exists, we took the capacity values from domestic academic sources 
(Delivand et al., 2011; Pattanapongchai and Limmeechokchai, 2011a; Promjiraprawat and 
Limmeechokchai, 2012). For wind, solar PV and CSP we estimated the capacity factors based on 
resource information from the IRENA global atlas (3Tier layer; IRENA, 2014). 

4.2.2. Cost Per Unit of Generated Electricity 

To model the cost of electricity, we assumed that the government supports each technology with an 
inflation-adjusted, fixed feed-in tariff (FIT). A 20-year lifetime for all investments in 2013-2021 
implies FIT payments in the period 2012-2040. The FIT rates for each technology are assumed to 
exactly reflect, at any point in time, the technology’s levelized cost of electricity (LCOE) (Waissbein et 
al., 2013): 
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௜,௧ܧܱܥܮ =  
ܧܵ כ ܰܫ ௜ܸ + σ ܧܱܲ ௜ܺ,௧ + ௜,௧ܦܥ  െ  ܴܶ כ ൫ܱܲܧ ௜ܺ,௧ + ௜,௧ܧܫ  + ܦ  ௜ܲ,௧൯

(1 + ఛఛ்ୀ଴(ܧܱܴ

(1 െ ܴܶ) כ σ ௜ܲ,௧ כ ௜,௧ܨܥ כ ͺ͹͸Ͳ݄
(1 + ఛ(ܧܱܴ

்
 ఛୀ଴

  

An equity investor perspective was adopted by modeling the cash flows generated for every 
technology on a single plant basis (Dinica, 2006). The determinants of the LCOE of a technology i in 
year t are thus the share of equity (SE), the total investment cost (INV), the operational expenses 
(OPEX), including operation, maintenance and fuel cost, and the cost of debt (CD), which includes the 
interest expenses and capital payments of the debt-financed investment share in a fixed-rate, 10-
year loan. A fixed corporate tax rate (TR) was assumed to apply to all income minus OPEX, interest 
expenses (IE) and annual depreciation (DP). The annual revenues from electricity generation are 
determined from the net electric capacity (P) and the time- and technology-specific capacity factor 
(CF; see below). ROE is the after-tax return on equity that an investor requires taking into account 
the risk-free rate as well as political, market and technology risks in the designated location. For 
system integration cost of variable renewable energy technologies (PV, CSP and wind), we 
considered an additional average of 0.0115 USD/kWh to account for balancing and grid integration 
cost (IEA, 2008). Table 3 and Table 6 in the appendix provide an overview over the input parameters 
for renewable energy technologies and key sector-wide assumptions used in our model. 

4.2.3. Local and Global Learning 

The cost of renewable electricity is assumed to decrease over time as technological capabilities 
accumulate in the industry (compare Section 2). In particular, the initial investment cost and the fixed 
O&M cost of technology I were modeled as a function of local and global cumulative installations 
(Ylocal and Yglobal), learning rates and diffusion over time: 

ܰܫ (݅݅݅) ௜ܸ,௧ = ௜,௟௢௖௔௟ߙ  כ ܰܫ ௜ܸ,௧ିଵ כ  ቆ ௜ܻ,௟௢௖௔௟,௧ିଵ
௜ܻ,௟௢௖௔௟,௧ିଶ

ቇ
௟௡(ଵି௅ோ೔,೗೚೎ೌ೗)

୪୬ ଶ
+ ௜,௚௟௢௕௔௟ߙ כ ܰܫ ௜ܸ,௧ିଵ כ ቆ ௜ܻ,௚௟௢௕௔௟,௧ିଵ

௜ܻ,௚௟௢௕௔௟,௧ିଶ
ቇ
௟௡(ଵି௅ோ೔,೒೗೚್ೌ೗)

୪୬ ଶ
ܹ݇ܦܷܵ]  ]  

௜,௧ݐݏ݋ܿ ܯ&ܱ (ݒ݅) = ௜ߚ  כ ܰܫ ௜ܸ,௧ [
ܦܷܵ
ܹ݄݇] 

To separate the effects of local and global technological learning, we split up the investment cost into 
locally and globally sourced components (ɲŝ,local and ɲi,global). The learning rate LR, too, is 
differentiated for local and global learning (LR,local and LR,global) (Hayward and Graham, 2013). 

The cost structures of different renewable technologies were taken from the literature (sources 
listed in Table 1). The estimates for the share and type of locally sourced components are based on a 
survey of news reports on renewable energy projects implemented in Thailand and interviews with 
local renewable energy investors. In the news report analysis, we coded the companies and main 
components involved renewable projects in Thailand (such as the Mae Chan PV project shown in 
Figure 4) according to the type of service or component they provided and the location of business 
(domestic / international)5. The interviews were used to verify the findings about the general 
patterns of locally sourced components. The information on typical sourcing strategies was then 
linked to the technology-specific cost structure data to obtain estimates of local and foreign cost 
shares, to which we applied local and global learning rates obtained from the literature (see Table 1). 

5 We considered local manufacturing as local sourcing, even when it is the result of foreign direct investment. 
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In the initial specification, our model used high but realistic estimates for the local share, as 
presented in Table 1. For all six considered renewable technologies, we assumed that grid connection, 
EPC (engineering, procurement and construction) and heavy, bulky components are sourced locally, 
while the core of the electro-mechanical conversion system is sourced globally. This rule leads to 
very different local shares: from 43% in the case of PV up to 87% for micro hydro. To assess the 
sensitivity to these assumptions, a second set of model specifications (see section 4.3) uses more 
pessimistic estimates for local private sector participation (values given in Table 5 in the appendix). A 
third set of model specifications assumes a cost markup of 20% for all local components in wind, 
solar PV and CSP, which are relatively new technologies in Thailand. 

Table 1: Split between locally and globally sourced components by technology 

Technology Locally sourced parts Globally sourced parts 
Cost split 

local/global 

Learning rate 

local/global) 

Wind 
Grid connection; engineering; procurement 
& construction; foundation; rotor blades; 
tower 

Nacelle (including electrical 
machinery, power electronics & 
control system) 

67%/33%a 11.3/4.3e 

PV 
Grid connection; engineering; procurement 
& construction; balance of system excluding 
inverter 

PV modules; inverter 43%/57%b 17/20e 

CSP  
(solar tower)f 

Grid connection; engineering; procurement 
& construction; solar field 

Power block; heat transfer fluid 
cycle 67%/33%b 14.6/14.6e 

Biomass 
(anaerobic 
digestion)f 

Grid connection; engineering, procurement 
& construction; fuel shredder; boiler; heat 
exchanger; piping 

Steam turbine and electric 
generator (prime mover); flue 
gas and water treatment 

75%/25%c 5/5d 

Biogas 
Grid connection; engineering, procurement 
& construction; fuel handling; balance of 
system; 75% of converter system 

Gas engine (prime mover); 25% 
of converter system 78%/22%d 5/5d 

Micro hydro 
Grid connection; engineering, procurement 
& construction; 50% of electro-mechanical 
equipment 

50% of electro-mechanical 
equipment 87%/13%c 5/5d 

aIRENA (2012b); bNREL (2012); cDelivand et al. (2011); dMott McDonald (2011); eHayward & Graham (2013); fFor both CSP and biomass a 
range of technological options exists, of which we chose one each to simplify the model; we chose anaerobic digestion because it is the 
dominant technology in Thailand (JIE, 2008), and solar tower because it represents 43% of the global near-term project pipeline (Hering, 
2012). 

 

4.3. Model Specification and Scenarios 

Different model specifications were created to evaluate the learning effects, to gauge the impact of 
key assumptions, and to compare learning effects to other policy priority areas (see Table 2). Models 
A-L were specified to investigate the impacts of local and global learning. The first four, A-D, assume 
the local shares estimated in Table 1 and only differ by the learning rates. Model A assumes no 
learning at all (learning rates set to zero) and serves as base-case scenario, while model B and C 
estimate the separate effects of local and global learning, respectively, and model D estimates the 
full joint effect of local and global learning. Models E, F, G and H follow the specifications of models 
A-D, but use a more conservative estimate of the share of local components (values are given in 
Table 5 in the Appendix). The models I, J, K and L, too, mirror models A-D, but account for the 
uncertainty about the initial cost of locally produced components by assuming a markup of 20%6 on 
all local components in wind, solar PV and concentrating solar power. Finally, model GL assumes that 
no components are locally sourced and global learning opportunities are fully exploited. 

6 The mark-up of 20% is within the range of mark-ups implicitly assumed in policies such as Turkey’s Renewable 
Energy Law 2010 (IEA and IRENA, 2013). 
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The last two models, CARBON and FINANCE, were specified to allow a comparison of the magnitude 
of learning effects to those of other suggested policy priority areas for international support. In 
model CARBON, we assumed a global carbon price of USD 15 to reflect a reinvigorated global carbon 
market from which renewables projects can raise additional financing. Model FINANCE assumes that 
both debt and equity cost are reduced by one percentage point to estimate the impact of improving 
financing conditions through policies that reduce investor risks. 

Table 2: Model description and specification; all models assume local diffusion of renewable technologies according to 
AEDP targets and global diffusion according to predictions in IEA (2013b)a. 

Model Description Implementation Purpose 

A or base-
case 

AEDP targets implemented, but 
neither local nor global diffusion 
leads to learning 

Learning rates LRlocal and LRglobal set to 0 Estimate cost without learning 

B Same as A, but local industry 
realizes learning opportunities 
from diffusion 

LRlocal >0; LRglobal =0 Estimate effects of local learning 

C Same as A, but global industry 
realizes learning opportunities 
from diffusion 

LRlocal =0; LRglobal >0 Estimate effects of global learning 

D Same as A, both local and global 
industries realize learning 
opportunities from diffusion 

LRlocal and LRglobal>0 Estimate full effects of learning 

E, F, G, H Same as A-D, but lower share of 
local components 

Reduced local share; values in Table 5 in the 
Appendix 

Estimate sensitivity to share of 
local cost; account for variance 
between projects 

I, J, K, L Same as A-D, but cost markup for 
local components technologies 
that are new to Thailand 

20% cost markup for local components in wind, 
PV, CSP  

Estimate sensitivity to initial local 
component cost; account for 
uncertainty about initial cost 

GL Same as C, but no local content No local content; LRglobal >0 Evaluate value of local 
component sourcing 

CARBON Same as A, but renewables projects 
benefit from carbon credit sales 

LRlocal =0; LRglobal =0; carbon price USD 15 for 10 
years; credits generated according to 
methodology of Clean Development Mechanism 

Compare learning effects to 
impact of a functioning global 
carbon market 

FINANCE Same as A, but renewables projects 
benefit reduced financing cost 

LRlocal =0; LRglobal =0; the investor’s expected rate 
of return and the lending rate for renewables are 
reduced by 1%-point 

Compare learning effects to 
impact of derisking activities 

aLocal installation data for 2012 from DEDE (2013); global installations in 2011 for solar, CSP and wind from IEA (2013b); for biomass and 
biogas from IRENA (2012c); and for micro hydro from IRENA (2012d). 
 

5. Results 

5.1. Impact on the Electricity Mix 

Our model predicts that, if the AEDP targets are achieved, Thailand will increase its share of non-
large-hydro renewables in the electricity sector from 6 to 24%, as shown in Figure 6. Biomass (47%) 
and biogas (36%) are responsible for most of this increase, given their high capacity increases and 
high plant utilization. Solar PV and wind contribute 8% and 7%, respectively, while CSP and micro 
hydro each produce 1%. 

Increasing by a total of over 11 GW, the diffusion of renewable energy reduces the pressure to install 
new conventional power plants. The construction of some coal power plants will be delayed – the 
capacity in 2021 is 800 MW lower with the AEDP targets implemented – but the most significant 
effect is on natural gas. In 2021, the installed capacity is 3,600 MW lower than in the case without 
additional renewable capacity; this leads to a drop of natural gas in the fuel mix from 59 to 46% (see 
Figure 6b). If all construction delays caused by the diffusion of renewables in the modeled period 
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2013-2040 are aggregated and stated in MW-years (MWa), natural gas power plants are delayed by 
62,250 MWa; coal power plants by 8,850 MWa; nuclear by 8,000 MWa and diesel plants by 1,250 
MWa. In terms of displaced electricity, too, natural gas is affected most (654 TWh in 2013-2040), 
followed by coal (145 TWh), nuclear (90 TWh), lignite (61 TWh) and diesel (5 TWh). In total, our 
model estimates that the AEDP targets avoid a total of 956 TWh of conventional electricity and 455.7 
million tons of CO2. 

Figure 6: Impact of the AEDP targets on the fuel mix in the electricity sector in 2021 

5.2. Incremental Policy Cost and Effects of Learning 

Since we are assuming fixed feed-in tariff payments over a 20-year lifetime for each installation, the 
cost of the increase in renewable electricity is spread over the period 2013-2040. The annual 
payments increase linearly with the capacity additions in 2013-2021 to a maximum of almost USD 
5bn per year, staying flat until the first added plants retire in 2032 and then dropping to zero (as 
shown in Figure 7). The savings from avoided conventional electricity production follow a similar path, 
with small variations between years caused by the delay of large fossil plants. 
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Figure 7: Payments for renewable electricity under the AEDP and avoided fossil electricity over time 

The total cost of reaching the AEDP targets as well as the model’s two main outcome metrics, the 
(discounted) incremental policy cost and the carbon mitigation cost, are depicted in Figure 8 for the 
different learning scenarios. For the base case, the FIT payments supporting the renewable energy 
installations add up to a total of USD $74.75bn in 2013-2040, while the cost of the avoided 
conventional electricity reach an aggregate of $61.43bn over the same period. The remaining, 
incremental policy cost is thus $13.3bn, which corresponds to a mitigation cost of $29.2 per ton of 
CO2.7 

By exploiting the local and global learning effects, this incremental policy cost can be reduced 
significantly. If both learning effects are fully exploited in the standard specification of the model 
(model D), the incremental policy cost drops by about 80% to $2.6bn. If most components are 
sourced globally (model H), the effect is less strong, but the cost is still reduced by $8.8bn (66%) to 
$4.5bn. Through learning, the incremental cost falls below the original base-case cost to $4bn, even if 
initial cost is assumed to include a 20% markup for local components. The models CARBON and 
FINANCE, not shown in Figure 8, help put the learning effects in perspective: A $15 carbon price 
would reduce incremental cost from $13.3bn to $7.52bn, while a reduction of one percentage point 
in the weighted cost of capital would reduce it to $9.88bn. 

Across all models, the effect of local learning outweighs that of global learning. Figure 8 shows the 
results for incremental and mitigation cost of all 12 different learning scenarios. If a high share of 
local sourcing is assumed (models B-D), local learning can reduce the incremental cost by $6.7bn, 
while global learning can further decrease them by $3bn. This strong effect of local learning is robust 
across all considered model specifications. In the models that assume a low local component share 
(E-H), local and global learning reduces the incremental cost by 36% and 31%, or $4.7bn and $4.1bn, 
respectively. When a mark-up of 20% is considered (models I-L), local learning shaves 47% ($8.5bn) 
off the incremental cost, while local learning reduces them by 19% ($3bn). 

7 If distributed as a surcharge on the electricity bill, these incremental cost would peak at about c$0.3 per kWh 
in 2020, or about 3% of the average retail electricity price (Ruangrong, 2012). 

5

4

3

2

1

0

-2

-3

-4

-5
204020352030202520202015

Incremental costCost of FIT payments Avoided cost

Cost of AEDP targets over time 
Total payments for FIT and total avoided cost [in billion USD2012, discounted]

17 

                                                           



An edited version of this paper is forthcoming in the Journal of Cleaner Production 

 

Figure 8: Total cost of supporting the AEDP targets in 2021 in different learning scenarios 

Another important finding is that strong local private sector participation, represented in the models 
by a high share of local components, can reduce mitigation cost beyond the reductions possible 
under a purely global value chain. This can be seen when comparing model GL with models D, H and 
L – the incremental cost in all three models are significantly lower than in GL. Indeed, the effect of 
local learning alone exceeds the total learning effect in GL in all but model F, the model with a low 
share of local content. 

5.2.1. Differences Between Technologies 

The effects seen on the global level are more nuanced when looking at the effects by technology. 
Figure 9 shows the LCOE of all technologies in 2021 for different scenarios. It can be seen that, 
overall, the learning effect is strongest for CSP (-54%) and PV (-43%) and weakest for micro hydro (-
8%) and biomass (-3%). Similar differences are visible for the relative importance of local and global 
learning. The effect of local learning is much stronger for CSP, with 41% and 13% reduction, 
respectively, whereas global learning is more relevant for PV (25% compared to 18%). Local learning 
also outweighs global learning for wind, biogas and micro hydro. However, in biomass, both are not 
very significant. 
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Figure 9: Effect of technological learning on the levelized cost of different renewable energy technologies in 2021. *The 
presented cost for fossil fuel electricity represents marginal cost of newly built power plants; the fuel cost reflect import 
prices of coal, diesel and natural gas (see Table 4 in the attachment). 

6. Discussion 

6.1. How to Tap Local Learning Potentials? 

The climate policy regime that emerges for the post-2020 period foresees that developing countries 
will pursue domestic policies that deliver on both climate and development objectives. In the view of 
national governments, local private sector participation in the value chains of low carbon 
investments holds the promise of creating employment and growth opportunities. At the same time, 
as our model results suggest, it can help to reduce the long-term cost of emissions mitigation. The 
process linking these two objectives is local technological learning. Our calculations imply that local 
learning can reduce the cost of renewable electricity to the point where they are very close to 
competitiveness with fossil fuels. But how can developing countries realize the learning opportunities 
that our model predicts are possible? And how can the international institutional framework assist 
developing countries in this agenda? 

Our case study of Thailand’s electricity sector highlights that the cost reduction opportunities from 
local learning depend on three interlinked factors: the (cumulative) local installations at the 
beginning of the analyzed period, which can be understood as proxy for the maturity of the domestic 
industry; the average share of locally sourced components; and the rate of local learning in the 
different technologies. 

First and foremost, the potential for future cost reductions from technological learning is determined 
by the (cumulative) size of the existing domestic market. The projected learning potentials in our 
model are highest for technologies that are new to Thailand, such as solar PV and CSP, while mature 
industries, such as biomass, exhibit limited opportunities to radically alter the cost structure of future 
investments. 
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The share of local components, the second factor, depends crucially on the availability of local 
components, which in turn depends on the amount of prior local investment in building up 
production capacity by firms along the industry chain. Any such investment will hinge on a credible, 
long-term market perspective (Pueyo et al., 2011). But besides their availability, the share of locally 
sourced components also depends on their competitiveness. Research has presented ample evidence 
that the competitiveness of local firms is the result not only of factor cost, or hardware imports, but 
also their stock of technological capabilities (Bell and Figueiredo, 2012). Without the necessary 
capabilities – i.e., if the initial markup is too high – local firms might never be able to enter the 
virtuous cycle of learning and new investments. Even if the investment comes from foreign firms, it 
will require complementary local capabilities to be “absorbed” effectively (Bell, 2010). Local 
technological capabilities depend on domestic private and public investments, in the form of a skilled 
workforce, local science and technology infrastructure, as well as firm networks and coordinating 
actors. International factors, such as the conditions for access to state-of-the-art technology, also 
play an important role for the local private sector to produce competitive products and services. 

Lastly, the third and most important factor in our model that determines the potential for learning to 
reduce cost compared to the base case is the rate of learning. If the learning opportunities are not 
seized, a large share of locally sourced components does not yield any benefit in terms of mitigation 
cost. Indeed, if there is a positive markup, it might actually be counterproductive, at least from a cost 
perspective. The extent to which industries can reap the benefits of learning is determined by the 
opportunities to create new knowledge from experience, but also by the processes that govern the 
dissemination, utilization and retention of the created knowledge (Bell and Albu, 1999). These 
processes can be shaped and enhanced by domestic governments and international support 
mechanisms. 

6.2. Implications for Domestic Policy 

Our results suggest that the governments of developing countries should pursue any investments in 
low carbon infrastructure with the explicit target of seizing the opportunity to build up local 
technological capabilities. First and foremost, whether low carbon investments can promote learning 
is determined by the nature of the policies that attract this investment. Experience in developed 
countries has shown that technological capabilities can best be created under stable and predictable 
market conditions (IRENA, 2013). Developing countries can create such conditions domestically 
through long-term targets and stable regulatory frameworks, as well as a clear allocation of 
responsibilities in the public sector. Options to promote industry-wide learning through efforts 
targeted at the dissemination, utilization and retention of created knowledge include investments in 
collaborative research programs that accompany and monitor infrastructure technology; public 
institutions for testing and certifying technology; requirements for beneficiaries of government 
support to publish non-sensitive information on cost and performance of the technologies; and the 
creation of government-led platforms for knowledge exchange. 

Apart from the need for efforts targeted at learning, the case study also suggests that policies to 
subsidize early local private sector participation can be a good investment. By lowering entry barriers 
in the beginning, public support can create conditions that enable learning, which, in the long term, 
lowers overall cost beyond what would have been possible with purely foreign suppliers. But such a 
policy needs to be designed with a clear target and procedure to review and eventually phase out 
support. Furthermore, direct subsidies for local sourcing of specific components carry the risk of 
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wasting public resources on subsidizing the production of components that are too costly, or too 
complex, to yield any local learning effects. Nevertheless, if they are focused on technologies and 
components for which technical expertise is available (or attainable), and if they are linked to efforts 
to build technological capabilities, our model suggests that local content policies can deliver on both 
development and cost reduction objectives (see also Johnson, 2013). 

6.3. Implications for International Technology Support Mechanisms 

In its support for technology development and transfer, the international climate policy regime has 
recently shifted attention from global agreements toward country-specific support, and from the 
transfer of hardware to the build-up of local technological capabilities. Most notably, the Technology 
Mechanism (TM) was created under the UNFCCC in 2011 to determine “technology needs […] based 
on national circumstances and priorities”, and to “accelerate action consistent with international 
obligations, at different stages of the technology cycle, including research and development, 
demonstration, deployment, diffusion and transfer of technology in support of action on mitigation 
and adaptation” (UNFCCC, 2011, p. 18-19). By emphasizing local and global aspects of technology 
development, innovation, and knowledge networks, the TM’s functions clearly go beyond the ‘one-
size-fits-all’ approach of the mechanisms under the Kyoto Protocol, but also beyond the purely 
country-centered practice of technology needs assessments supported by the United Nations. 
However, given the range of initiatives that institutions such as the TM could potentially support 
means that there is a need for analysis to inform the design and priority setting of these institutions. 
The analysis presented in this paper provides implications for the allocation of resources between 
global and local support. 

Our results suggest technology characteristics, such as novelty and the share of simple, heavy and 
country-specific components, determine the relevance of local learning in concert with country 
characteristics, such as the existence of domestic industry in similar sectors and the size of the 
already existing market for the considered technology. These case-specific differences suggest that 
the TM should ideally integrate global and local perspectives. In cases where local learning is crucial, 
the TM should assist countries by strengthening the local innovation system, e.g., by identifying 
technology needs and priorities; by supporting the design of policies and regulations; by providing 
training and capacity building; through efforts to provide developing countries with access to IPR; or 
through the creation of local actor networks. In cases where global learning is very important, the TM 
should strengthen the global, sectoral innovation systems through the creation of global technology 
roadmaps; the promotion of global technology standards; the coordination of policies across 
countries and regions; the creation of global, technology-centered networks; or the coordination of 
institutional linkages between the TM and other global and regional institutions (such as the World 
Trade Organization, the Green Climate Fund, or the Global Environmental Facility). Overall, our case 
study suggests that the recent emphasis on local capabilities is promising. However, since resources 
are necessarily limited, the TM should pursue these different activities with priorities reflecting 
country characteristics and technology-specific value chain structures. 

6.4. Limitations 

A quantitative case study such as the one presented in this paper has a number of inherent 
limitations that constrain the validity and applicability of our findings. We see three main factors that 
need to be highlighted here. First, we are not aware of any other attempt to differentiate local and 
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global learning in a techno-economic model for a developing country. Our projections for the 
potential of local learning are therefore limited by the availability of empirically grounded, cross-
industry estimates for local component shares, cost mark-ups and local learning rates.8 To obtain 
more accurate estimates than those presented here, further research is needed to better understand 
the cost structure and cost dynamics of renewable energy projects in developing countries. A second 
limitation concerns the model’s output metrics. Government decisions should be made based on 
cost-benefit calculations. Our paper provided only estimates for possible cost reductions – the 
benefits side – while neglecting the cost of policies to realize and support local learning processes. 
Public research programs, testing and certification institutions, and international support for policy 
design and capacity building all come at a cost. In order to provide estimates for the leverage of 
these public investments, i.e., how many cost reductions can be realized at what cost, further data 
and analysis is necessary. This is particularly important when comparing different policy options. 
Lastly, by modeling technological capabilities as production cost, and modeling technological learning 
as cost reductions through a logarithmic function of only installations, our model grossly simplified 
what is, in reality, a set of extremely complex and distributed processes with multiple qualitative and 
quantitative dimensions. It can thus only function as a small piece in the broader set of analyses on 
technological learning that aims to support the design of domestic and international climate policy. 

7. Conclusion 

This paper presented a case study of Thailand’s electricity sector in order to estimate the effects of 
local and global technological learning on the cost of renewable energy technologies in developing 
countries. Our model results suggest (i) that technological learning can, in the near future, reduce the 
cost of renewable electricity in emerging economies to a level that is close to competitiveness with 
fossil fuels; (ii) the major potential for cost reductions through learning lies in the build-up of local 
technological capabilities; and (iii) the relative importance of local and global learning, while clear in 
aggregate terms, differs significantly between technologies. This finding lends quantitative support to 
the argument that the conditions enabling local learning, such as a skilled workforce, a stable 
regulatory framework, and the establishment of sustainable business models, have a more significant 
impact on the cost of renewable energy in developing countries than global technology learning 
curves. The recent shift of international support under the UNFCCC toward the strengthening of local 
innovation systems is therefore promising. However, our results also suggests that international 
support must not disregard the global innovation system perspective in order to reap the full 
benefits of technological learning across the wide range of clean technologies. These insights are 
particularly relevant for the ongoing design and functional specification of mechanisms for 
technology support under the post-Kyoto climate policy regime of the UNFCCC. Here, our 
quantitative approach and the focus on mitigation cost complements existing qualitative and 
conceptual work on the topic. Further qualitative research should explore in more detail the 
economics of renewable energy projects in developing countries, and the effectiveness of different 
policy options to promote technological learning in and across the developed world. Additional 
quantitative research should investigate the leverage of different policy options, in particular the 
relative merit of options targeted at learning, de-risking and global pricing of carbon emissions.  

8 For example, we were only able to obtain differentiated estimates for local and global learning rates for wind 
and solar PV, and for both cases the numbers are from developed country analyses. 
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Appendix A: Cost of Avoided Electricity 

Fuel Mix in the Electricity Sector 

Thailand’s electricity sector is partly vertically integrated and dominated by state-owned enterprises 
(Wisuttisak, 2012). The Electricity Generation Authority of Thailand (EGAT) is the transmission system 
operator and directly operates around 50% of the generation assets and, as their largest shareholder, 
controls the two largest independent power producers. Furthermore, the wholesale market is not 
liberalized. Decisions over new power plant investments are therefore still made based on long-term 
integrated plans, rather than purely based on market signals, and plant utilization is based on long-
term allocations rather than marginal cost of generation. 

Our model of the fuel mix aims to reflect this decision-making process. We took the power plant 
pipeline from the Power Development Plan from June 2012 (EPPO, 2012a) and assumed that all 
hydropower, combined-heat-and-power, and contracted import capacity comes online as planned. 
Additional power plants were assumed to be built, in the sequence determined by the plan, 
whenever dependable capacity exceeds peak demand by less than 15%, or total expected demand 
exceeds expected generation, based on historic capacity factors, exceeds more than 5%. This 
approach is similar to the one adopted by domestic researchers (Sangarasri-Greacen and Greacen, 
2012). The dependable capacity equals the total capacity adjusted by factors that aim to reflect the 
fact that not all build capacity can be expected to be available in the moment of peak demand, 
because of maintenance, failures, or intermittent generation.9 The fuel mix was then calculated, on a 
yearly basis, from historic capacity factors, marginally adjusted for the dispatchable plant fleet to 
exactly meet yearly demand. “Dispatchable” refers here to the plants that are ramped up and down 
to balance demand, i.e., the full fleet excluding renewables, contracted import capacity (lignite and 
hydro), municipal solid waste and (heat-led) cogeneration. 

Avoided Electricity 

To model the effect of renewable energy diffusion on conventional electricity generation, we 
compared the hypothetical scenario without renewable energy diffusion to the case of full 
implementation of the AEDP targets. The total avoided electricity we then calculated by aggregating 
the differences between total generation in 2012-2041 with and without AEDP targets for each of the 
dispatchable technologies (generation from non-dispatachable technologies is not affected by the 
AEDP). 

Modeling the marginal cost of avoided electricity required one more step of differentiation. The 
impact of renewable capacity installations can be twofold: plant utilization of dispatchable power 
plants can be reduced or the construction of new power plants postponed. Our model accounted for 
these two effects by dividing the total avoided electricity into build and operating margins. For all 
displaced electricity the cost of electricity was calculated based on the LCOE approach presented in 
section 4.2.2. However, in the case of reduced plant utilization, the operating margin, we assumed 
the marginal cost of electricity to contain only the variable cost (O&M and fuel). The displaced 

9 The factors are taken from Sangarasri-Greacen and Greacen (2012) and listed in Table 3. 
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electricity from postponed power plants, the build margin, contains all fixed and variable cost.10 
Table 4 summarizes the input assumptions for all conventional technologies. 

Appendix B: Model Input Assumptions 

Table 3: Input assumptions for renewable energy technologies (values for 2012; $=USD2012) 

 
Size 

(MW) 

Lifetime 

[a] 

Investment 

[$/kW] 

O&M 

fix 

[$/kWa] 

O&M 

variable 

[$/MWh] 

Fuel cost 

[$/MWh] 

Efficiency 

[%] 

Capacity 

factor 

[%] 

Dependable 

capacity 

[%] 

Carbon 

credits* 

[kCO2e/MWh] 

Wind 10 20 1,980a 60a 0a - - 31.8e 9f 555.4h 
PV 10 20 2,830a 50a 0a - - 19.8e 20f 555.4h 
CSP 5 20 4,910a 50a 0a - - 21.5e 70g 555.4h 
Biomass 10 20 2,157b 0b 10.4b 41.2b 19.8%b 69b 55g 511.3h 
Biogas 1 20 2,554c 116c 0c 10c 31%c 70c 21g 511.3h 
Micro 
hydro 1 20 2,800d 112d 0d - - 29i 40g 511.3h 
aNREL (2012); bDelivand et al. (2011); cPattanapongchai and Limmeechokchai (2011); dIRENA (2012e); ecalculated based on data from the 
IRENA Global Atlas (3Tier; 2014); fNaksrisuk and Audomvongseree (2013); gSangarasri-Greacen and Greacen (2012); hMunchareon et al. 
(2010); iPromjiraprawat and Limmeechokchai (2012) other data are own assumptions and calculations; *used for calculation of generated 
carbon credits; data from the Thailand Greenhouse Gas Management Organization (Muncharoen et al., 2010), which calculates the avoided 
carbon emissions of renewable projects in Thailand based on CDM methodology. The CDM methodology distinguishes between 
intermittent (solar and wind) and non-intermittent technologies (biomass, biogas and micro-hydro)- Because they need back-up power, 
intermittent sources are assumed to not much affect the decision about new fossil-fuelled power plants. The electricity they avoid 
therefore comes mostly from existing power plants (75% to 25%), while non-intermittent sources are assumed to avoid a larger amount of 
newly built fossil-fuelled power capacity (50% to 50%). Since the new power plants have lower emissions than the existing plant fleet, the 
intermittent sources end up avoiding slightly more carbon emissions than the non-intermittent sources. 
 

Table 4: Input assumptions for dispatchable fossil fuel technologies (values for 2012; $=USD2012) 

 

  

10 This procedure was also employed by Schmidt et al. (2012) and is related to the rules employed to calculate 
avoided carbon emissions in the Clean Development Mechanisms under the UNFCCC. 

 Lifetime [a] 

Investment 

[$/kW] 

O&M fixed 

[$/kWa] 

O&M 

variable 

[$/MWh] 

Fuel 

efficiency [%] 

Fuel cost* 

[$/kWh] 

Capacity 

factor [%] 

Carbon emissions 

[tCO2e/MWh] 

Subcritic. lignite 30 1,125a 38.91b 11.02b 35b 0.005d 90 1,159b 
IGCC lignite 30 2,830c 50c 7.9c 46c 0.005d 90 882 
Adv. nuclear 40 5,429c 91.65c 2.1c 33c 0.003d 90 21b 
Gas turbine ** ** 7.21c 15.28c 31.4c 0.052e 30 631b 
CCGT 30 1,006c 15.1c 3.21c 54c 0.052e 60 404b 
Subcritic. coal ** ** 38b 0.04b 36b 0.015f 90 973b 
Supercrit. coal 30 2,934c 31.18d 4.7d 39c 0.015f 90 782b 
IGCC coal 30 3,784c 51.39c 8.45c 39c 0.015f 90 782b 
Diesel turbine ** ** 12a 28.6a 22a 0.061d 30 808b 
CCGT: combined cycle gas turbine; IGCC: integrated gasification combined cycle; aPattanapongchai and Limmeechokchai (2011); bPromjiraprawat 
and Limmeechokchai (2012); cDOE/EIA (2013); dEPPO (2012d);eprice for natural gas is for imports from Myanmar, from PTIT (2012) fIEA (2013c); 
*Fuel price trends from IEA (2013c); **Not needed because no new power plants in the pipeline 
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Table 5: Split between locally and globally sourced components by technology in models E-H, representing a low share of 
local components 

Technology Locally sourced parts Globally sourced parts 
Cost split 

local/global 

Learning rate 

local/global 

Wind Grid connection; engineering; procurement 
& construction 

Nacelle (including electrical 
machinery, power electronics 
& control system); foundation; 
rotor blades; tower 

36/64a 11.3/4.3d 

PV Grid connection; engineering; procurement 
& construction 

PV modules; inverter; balance 
of system 36/64b 17/20d 

CSP Grid connection; engineering; procurement 
& construction 

Power block; heat transfer 
fluid cycle; solar field 23/77b 14.6/14.6d 

Biomass Grid connection; engineering, procurement 
& construction; fuel shredder; piping 

Steam turbine and electric 
generator (prime mover); flue 
gas and water treatment; 
boiler; heat exchanger 

37/63c 5/5c 

Biogas Grid connection; engineering, procurement 
& construction; fuel handling 

Gas engine (prime mover); 
converter system; electrical 
system 

48/52c 5/5c 

Micro hydro Grid connection; engineering, procurement 
& construction Electro-mechanical equipment 77/23c 5/5c 

aIRENA (2012c); bNREL (2012); cMott McDonald (2011); dHayward & Graham (2013) 

 

Table 6: Sectoral assumptions in the model 

Factor Assumption Source 

Currency USD 2012 in real terms --- 
Exchange rate 1 USD = 31.5 Thai Baht The World Bank 
Inflation 2.5% Bank of Thailand 
Equity/debt spilt 30/70 Current practice 
Return on equity 11.2% real UNFCCC (2010) 
Lending rate 6.7% nominal Ondraczek et al. (2013) 
Loan tenor Half of investment lifetime Waissbein et al. (2013) 
Tax rate 30% Current practice 
Depreciation Linear, max 5% p.a., min book value 5% Current practice 
Discounting of public expenditures Equals 40-year bond yield of 4.43 % Thai Bond Market Association, 

http://www.thaibma.or.th/yieldcurve/YieldTTM.aspx,; 
assessed on 4/3/2014 
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